Evaluation of boundary-layer type in a weather forecast model utilising long-term Doppler lidar observations
نویسندگان
چکیده
Many studies evaluating model boundary-layer schemes focus either on near-surface parameters or on short-term observational campaigns. This reflects the observational datasets that are widely available for use in model evaluation. In this paper we show how surface and long-term Doppler lidar observations, combined in a way to match model representation of the boundary layer as closely as possible, can be used to evaluate the skill of boundary-layer forecasts. We use a 2-year observational dataset from a rural site in the UK to evaluate a climatology of boundary layer type forecast by the UK Met Office Unified Model. In addition, we demonstrate the use of a binary skill score (Symmetric Extremal Dependence Index) to investigate the dependence of forecast skill on season, horizontal resolution and forecast leadtime. A clear diurnal and seasonal cycle can be seen in the climatology of both the model and observations, with the main discrepancies being the model overpredicting cumulus capped and decoupled stratocumulus capped boundary-layers and underpredicting well mixed boundarylayers. Using the SEDI skill score the model is most skillful at predicting the surface stability. The skill of the model in predicting cumulus capped and stratocumulus capped stable boundary layer forecasts is low but greater than a 24 hr persistence forecast. In contrast, the prediction of decoupled boundary-layers and boundary-layers with multiple cloud layers is lower than persistence. This process based evaluation approach has the potential to be applied to other boundary-layer parameterisation schemes with similar decision structures.
منابع مشابه
Continuous monitoring of the boundary-layer top with lidar
Continuous lidar observations of the top height of the boundary layer (BL top) have been performed at Leipzig (51.3 • N, 12.4 • E), Germany, since August 2005. The results of measurements taken with a compact, automated Raman lidar over a one-year 5 determination of the BL top are discussed. The most promising technique, the wavelet covariance algorithm, is improved by implementing some modific...
متن کاملDoppler Lidar in the Wind Forecast Improvement Projects
This paper will provide an overview of some projects in support of Wind Energy development involving Doppler lidar measurement of wind flow profiles. The high temporal and vertical resolution of these profiles allows the uncertainty of Numerical Weather Prediction models to be evaluated in forecasting dynamic processes and wind flow phenomena in the layer of rotor-blade operation.
متن کاملDevelopment of airborne 2-μm coherent lidar for CO2 and wind measurements
Wind profile is fundamental in many atmospheric phenomena. Most of the weather stations are on land, while the stations on the sea are very sparse. Present global three-dimensional wind data is not good enough to improve numerical weather prediction, the global climate model, and many other meteorological studies. Spaceborne infrared and visible imagers and microwave scatterometers can make win...
متن کاملThe role of urban boundary layer investigated with high-resolution models and ground-based observations in Rome area: a step towards understanding parameterization potentialities
The urban forcing on thermodynamical conditions can greatly influence the local evolution of the atmospheric boundary layer. Heat stored in an urban environment can produce noteworthy mesoscale perturbations of the lower atmosphere. The new generation of high-resolution numerical weather prediction models (NWP) is nowadays often applied also to urban areas. An accurate representation of cities ...
متن کاملObservations of Wind Profile of Marine Atmosphere Boundary Layer by Shipborne Coherent Doppler Lidar
Pulsed Coherent Doppler Lidar (CDL) system is so good as to prove the feasibility of the marine atmosphere boundary layer detection. A ship-mounted Coherent Doppler lidar was used to measure the wind profile and vertical velocity in the boundary layer over the Yellow sea in 2014. Furthermore, for the purpose of reducing the impact of vibration during movement and correcting the LOS velocity, th...
متن کامل